

Parallel Loudspeaker Impedance $\begin{aligned} Z_{T} & =\frac{1}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}} \cdots \frac{1}{Z_{N}}} \\ Z_{T} & =\frac{Z_{1}}{N} \end{aligned}$ Where Z_{T} is the total impedance of the loudspeaker system Z_{1} is the measured impedance of a loudspeaker N is the quantity of loudspeakers in the circuit	Ohm's Law Related $I=\frac{P}{V}$ Where I is current V is circuit voltage P is power * * Look up amplifier power in owner's manual before adding to the other AV devices.
Needed Acoustic Gain $N A G=20 \log \left(\frac{D_{0}}{E A D}\right)$ Where $N A G$ is Needed Acoustic Gain D_{0} is distance from source to listener $E A D$ is Equivalent Acoustic Distance	Potential Acoustic Gain $P A G=20 \log \left(\frac{D_{0} * D_{1}}{D_{2} * D_{s}}\right)$ Where PAG is Potential Acoustic Gain D_{0} is distance from source to listener D_{1} is distance from loudspeaker to mic D_{z} is distance from loudspeaker to listener D_{s} is distance from source to microphone
Audio System Stability (PAG NAG Complete Formu $20 \log _{10}\left(\frac{D_{O}}{E A D}\right)<20 \log$ Where $N O M=$ Number of Open Microphones FSM = Feedback Stability Margin $E A D=$ Equivalent Acoustic Distance $D_{0}=$ the distance between the talker and the fa $D_{1}=$ the distance between the closest loudspea $D_{2}=$ the distance between the loudspeaker clos $D_{s}=$ the distance between the sound source (ta	$0\left(\frac{D_{0} D_{1}}{D_{2} D_{S}}\right)-10 \log _{10}(N O M)-F S M$ hest listener r to the microphone and the microphone t to the farthest listener and the farthest listener er) and the microphone
Power Amplifier Wattage (Constant Voltage) $W_{t}=W * N * 1.5$ Where W_{t} is required wattage W is watt tap used at individual loudspeaker N is total number of loudspeakers 1.5 is 50 percent amplifier headroom	Power Amplifier Heat Load $\text { Total BTU }=W * 3.4 *\left(1-E_{D}\right)$ Where Total BTU is the total British Thermal Units released W is the wattage of the amplifier E_{D} is the efficiency of the device

Heat Load $\text { Total BTU }=W_{E} * 3.4$ Where Total BTU is the total British Thermal Units released W_{E} is the total watts of equipment in the room	Jam Ratio $J A M=\frac{I D}{\left(\frac{O D_{1}+O D_{2}+O D_{3}}{3}\right)}$ Where ID is the inner diameter of the conduit OD is the outer diameter of each conductor
Conduit Capacity Where $I D$ is the inner diameter of the conduit $O D$ is outer diameter of each conductor	$\begin{array}{ll} I D>\sqrt{\frac{O D^{2}}{0.53}} & \text { One Cable } \\ I D>\sqrt{\frac{O D^{2}+O D^{2}}{0.31}} & \text { Two Cables } \\ I D>\sqrt{\frac{O D^{2}+O D^{2}+O D^{2} \ldots}{0.40}} & \text { 3+ Cables } \\ \hline \end{array}$
Computer Video Signal Bandwidth $H F=\frac{H_{p i x} * V_{p i x} * f_{v}}{2} * 3$ Where $H F$ is the highest frequency in Hertz $H_{p i x}$ is the total number of horizontal pixels $V_{p i x}$ is the total number of vertical pixels f_{v} is the refresh rate	Minimum Video System Bandwidth $S F=H F * 2$ Where $S F$ is the system frequency in Hertz $H F$ is the highest frequency in Hertz of the computer signal
Digital Video Data Rate $R=H_{p i x} * V_{p i x} * C * 1.25 * F P S * 3$ Where R is the data rate in bits per second $H_{p i x}$ is the total number of horizontal pixels $V_{p i x}$ is the total number of vertical pixels C is the color depth (bit depth) in bits FPS is the number of frames per second	Minimum Task Lighting $\text { Light }_{\text {Min }}=\frac{\left(\frac{L_{P}}{A}\right)}{3}$ Where Light $_{\text {Min }}$ is the minimum task lighting in Lux L_{P} is projector lumens A is the area of the screen in meters squared *Assume unity gain unless otherwise directed.

