Master List of Formulas and Symbology Descriptions

	Video Camera Image Size	
<u>Disclaimer</u> : Here are some common formulas; however this is not an exhaustive list and you may not need all of them.	$IS = 2 * D * \tan\left(\frac{A}{2}\right)$ Where <i>IS</i> is the image size <i>D</i> is the distance from the lens to the subject <i>A</i> is the lens angle of view	
Projector Lumens Output $Brightness = \frac{\left(\frac{L * C * A}{Sg}\right)}{Dr}$		
Where L is ambient light at screen location* C is the desired contrast ratio 7:1 – Passive Viewing – Television 15:1 – Basic Decision Making Presentations 50:1 – Analytical Decision Making – Art work, Medical 80:1 – Full Motion Video – Home Theater A is the area of screen ** Sg is the gain of the screen. Assume a screen gain of 1 unless otherwise noted. Dr is the projector derating value. Assume a derating value of 0.75 unless otherwise noted. * Light units are in either lux or footcandles ** area in square meters or square feet		
Loudspeaker Coverage Pattern (Ceiling Mounted)	Loudspeaker Spacing (Ceiling Mounted)	
$D = 2 * (H - h) * \tan\left(\frac{C_{\angle}}{2}\right)$ Where <i>D</i> is diameter of coverage circle at ear height	D = 2 * r (Edge-to-edge) $D = r * \sqrt{2}$ (Minimum overlap) D = r (Center-to-center)	
<i>H</i> is overall ceiling height <i>h</i> is height of the listener's ears (48 inches) C_{2} is off-axis coverage angle of polar pattern	Where <i>D</i> is the distance between loudspeakers <i>r</i> is the radius of loudspeaker coverage circle	
Wattage at the Loudspeaker		
$EPR = 10^{\wedge} \left(\frac{\frac{L_p + H - L_s + 20\log\left(\frac{D_2}{D_r}\right)}{10}}{10}\right) * W_{ref}$		
Where <i>EPR</i> is electrical power required at loudspeaker L_P is SPL required at distance D_2 <i>H</i> is required headroom L_S is loudspeaker sensitivity at 3.28 feet (1 m)		

 D_2 is distance from loudspeaker to listener

D_r is distance reference value

*W*_{ref} is the wattage reference value. Assume a wattage reference value of 1 unless otherwise noted.

Parallel Loudspeaker Impedance

Ohm's Law Related

$$Z_{T} = \frac{1}{\frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \frac{1}{Z_{3}} \dots \frac{1}{Z_{N}}}$$

$$Z_{T} = \frac{Z_{1}}{\frac{N}{N}}$$
Where Z_{T} is the total impedance of the loudspeaker system
 Z_{I} is the measured impedance of a loudspeaker N is the quantity of loudspeakers in the circuit
Needed Acoustic Gain
 $NAG = 20 \log \left(\frac{D_{0}}{EAD}\right)$
Where NAG is Needed Acoustic Gain
 D_{0} is distance from source to listener
 EAD is Equivalent Acoustic Distance
 $I = \frac{P}{V}$
Where I is current
 V is circuit voltage
 P is converting the value of $\frac{P}{V}$
Where I is current
 V is circuit voltage
 P is power $*$
* Look up amplifier power in owner's manual before adding to the other AV devices.
Potential Acoustic Gain
 D_{0} is distance from source to listener
 D_{0} is distance from source to listener
 D_{2} is distance from loudspeaker to mic
 D_{2} is distance from source to listener
 D_{3} is distance from source to microphone

Audio System Stability (PAG NAG Complete Formula)

$$20\log_{10}\left(\frac{D_0}{EAD}\right) < 20\log_{10}\left(\frac{D_0D_1}{D_2D_S}\right) - 10\log_{10}(NOM) - FSM$$

Where *NOM* = Number of Open Microphones

FSM = Feedback Stability Margin

EAD = Equivalent Acoustic Distance

 D_0 = the distance between the talker and the farthest listener

 D_1 = the distance between the closest loudspeaker to the microphone and the microphone

 D_2 = the distance between the loudspeaker closest to the farthest listener and the farthest listener

 D_s = the distance between the sound source (talker) and the microphone

Power Amplifier Wattage (Constant Voltage)	Power Amplifier Heat Load
$W_t = W * N * 1.5$	$Total BTU = W * 3.4 * (1 - E_D)$
 Where Wt is required wattage W is watt tap used at individual loudspeaker N is total number of loudspeakers 1.5 is 50 percent amplifier headroom 	Where <i>Total BTU</i> is the total British Thermal Units released W is the wattage of the amplifier E_D is the efficiency of the device

Heat Load	Jam Ratio
$Total BTU = W_E * 3.4$ Where <i>Total BTU</i> is the total British Thermal Units released $W_E \text{ is the total watts of equipment in the room}$	$JAM = \frac{ID}{\left(\frac{OD_1 + OD_2 + OD_3}{3}\right)}$ Where ID is the inner diameter of the conduit OD is the outer diameter of each conductor
Conduit Capacity Where <i>ID</i> is the inner diameter of the conduit <i>OD</i> is outer diameter of each conductor	$ID > \sqrt{\frac{OD^2}{0.53}}$ One Cable $ID > \sqrt{\frac{OD^2 + OD^2}{0.53}}$ Two Cables
	$ID > \sqrt{\frac{OD^2 + OD^2 + OD^2 \dots}{0.40}}$ 3+ Cables
Computer Video Signal Bandwidth	Minimum Video System Bandwidth
$HF = \frac{H_{pix} * V_{pix} * f_{v}}{2} * 3$ Where <i>HF</i> is the highest frequency in Hertz <i>H_{pix}</i> is the total number of horizontal pixels <i>V_{pix}</i> is the total number of vertical pixels <i>f_v</i> is the refresh rate	SF = HF * 2 Where <i>SF</i> is the system frequency in Hertz <i>HF</i> is the highest frequency in Hertz of the computer signal
Digital Video Data Rate	Minimum Task Lighting
$R = H_{pix} * V_{pix} * C * 1.25 * FPS * 3$ Where R is the data rate in bits per second H_{pix} is the total number of horizontal pixels V_{pix} is the total number of vertical pixels C is the color depth (bit depth) in bits FPS is the number of frames per second	$Light_{Min} = \frac{\left(\frac{L_P}{A}\right)}{3}$ Where $Light_{Min}$ is the minimum task lighting in Lux L_P is projector lumens A is the area of the screen in meters squared *Assume unity gain unless otherwise directed.