<u>Disclaimer</u>: Here are some common formulas; however this is not an exhaustive list and you may not need all of them.

Video Camera Image Size

$$IS = 2 * D * \tan\left(\frac{A}{2}\right)$$

Where *IS* is the image size

D is the distance from the lens to the subject *A* is the lens angle of view

Projector Lumens Output

$$Brightness = \frac{\left(\frac{L*C*A}{Sg}\right)}{Dr}$$

Where L is ambient light at screen location*

C is the desired contrast ratio

7:1 - Passive Viewing - television

15:1 – Basic Decision Making Presentations

50:1 - Analytical Decision Making - Art work, Medical

80:1 - Full Motion Video - Home Theater

A is the area of screen **

Sg is the gain of the screen. Assume a screen gain of 1 unless otherwise noted.

Dr is the projector derating value. Assume a derating value of 0.75 unless otherwise noted.

- * Light units are in either lux or footcandles
- ** area in square meters or square feet

Loudspeaker Coverage Pattern (Ceiling Mounted)

$$D = 2 * (H - h) * \tan\left(\frac{C_{\angle}}{2}\right)$$

Where D is diameter of coverage circle at ear height

H is overall ceiling height

h is height of the listener's ears (48 inches)

 C_{\angle} is off-axis coverage angle of polar pattern

Loudspeaker Spacing (Ceiling Mounted)

$$D = 2 * r$$
 (Edge-to-edge)

$$D = r * \sqrt{2} \qquad \text{(Minimum overlap)}$$

$$D = r$$
 (Center-to-center)

Where D is the distance between loudspeakers r is the radius of loudspeaker coverage circle

Wattage at the Loudspeaker

$$EPR = 10^{\Lambda} \left(\frac{L_p + H - L_s + 20 \log\left(\frac{D_2}{D_r}\right)}{10} \right) * W_{ref}$$

Where EPR is electrical power required at loudspeaker

 L_P is SPL required at distance D_2

H is required headroom

 L_S is loudspeaker sensitivity at 3.28 feet (1 m)

 D_2 is distance from loudspeaker to listener

 D_r is distance reference value

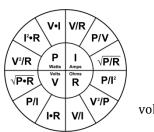
 W_{ref} is the wattage reference value. Assume a wattage reference value of 1 unless otherwise noted.

Loudspeaker Impedance

$$Z_T = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} \dots \frac{1}{Z_N}}$$

$$Z_T = \frac{Z_1}{N}$$

Where Z_T is the total impedance of the loudspeaker system


 Z_1 is the measured impedance of a loudspeaker

N is the quantity of loudspeakers in the circuit

Ohm's Law Related

$$I = \frac{P}{V}$$

Where *I* is current *V* is circuit *P* is power *

voltage

* Look up amplifier power in owner's manual before adding to the other AV devices.

Needed Acoustic Gain

$$NAG = 20 \log \left(\frac{D_0}{EAD} \right)$$

Where NAG is Needed Acoustic Gain D_{θ} is distance from source to listener EAD is Equivalent Acoustic Distance

Potential Acoustic Gain

$$PAG = 20 \log \left(\frac{D_0 * D_1}{D_2 * D_S} \right)$$

Where PAG is Potential Acoustic Gain

 D_0 is distance from source to listener

 D_1 is distance from loudspeaker to mic

 D_2 is distance from loudspeaker to listener

 D_S is distance from source to microphone

Audio System Stability (PAG NAG Complete Formula)

$$20\log_{10}\left(\frac{D_O}{EAD}\right) < 20\log_{10}\left(\frac{D_0D_1}{D_2D_S}\right) - 10\log_{10}(NOM) - FSM$$

Where *NOM* = Number of Open Microphones

FSM = Feedback Stability Margin

EAD = Equivalent Acoustic Distance

 D_0 = the distance between the talker and the farthest listener

 D_1 = the distance between the closest loudspeaker to the microphone and the microphone

 D_2 = the distance between the loudspeaker closest to the farthest listener and the farthest listener

 D_s = the distance between the sound source (talker) and the microphone

Power Amplifier Wattage (Constant Voltage)

$$W_t = W * N * 1.5$$

Where W_t is required wattage

 \ensuremath{W} is watt tap used at individual loudspeaker

N is total number of loudspeakers

1.5 is 50 percent amplifier headroom

Power Amplifier Heat Load

$$Total\ BTU = W * 3.4 * (1 - E_D)$$

Where $Total\ BTU$ is the total British Thermal Units released W is the wattage of the amplifier E_D is the efficiency of the device

Heat Load

$$Total\ BTU = W_E * 3.4$$

Where *Total BTU* is the total British Thermal Units released

 W_E is the total watts of equipment in the room

Jam Ratio

$$JAM = \frac{ID}{\left(\frac{OD_1 + OD_2 + OD_3}{3}\right)}$$

Where ID is the inner diameter of the conduit OD is the outer diameter of each conductor

Conduit Capacity

Where *ID* is the inner diameter of the conduit *OD* is outer diameter of each conductor

$$ID > \sqrt{\frac{OD^2}{0.53}}$$

One Cable

$$ID > \sqrt{\frac{OD^2 + OD^2}{0.31}}$$

Two Cables

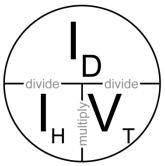
$$ID > \sqrt{\frac{OD^2 + OD^2 + OD^2 \dots}{0.40}}$$

3+ Cables

Image Height to Farthest Viewer Distance Ratio

$$\frac{I_H}{I_D} = \frac{D_T}{V_T}$$

Where I_H = Image height


 I_D = Distance from the farthest viewer to the image

 V_T = Viewing Task Ratio: distance 4 for Inspection Viewing Tasks 6 for Reading with Clues Viewing Tasks

8 for General Viewing Tasks

 D_T = Viewing task: height ratio. This will be 1.

The relationship between image height, viewing task, and farthest viewer distance can also be represented as a wheel:

Computer Video Signal Bandwidth

$$HF = \frac{H_{pix} * V_{pix} * f_v}{2} * 3$$

Where *HF* is the highest frequency in Hertz

 H_{pix} is the total number of horizontal pixels V_{pix} is the total number of vertical pixels

 f_v is the refresh rate

Minimum Video System Bandwidth

$$SF = HF * 2$$

Where *SF* is the system frequency in Hertz

HF is the highest frequency in Hertz of the computer signal