# **Master List of Formulas and Symbology Descriptions**

# Disclaimer: Here are some common formulas; however this is not an exhaustive list and you may not need all of them.

## Video Camera Image Size

$$IS = 2 * D * \tan\left(\frac{A}{2}\right)$$

Where *IS* is the image size

*D* is the distance from the lens to the subject A is the lens angle of view

### **Projector Lumens Output**

$$Brightness = \frac{\left(\frac{L*C*A}{Sg}\right)}{Dr}$$

Where L is ambient light at screen location\*

*C* is the desired contrast ratio

7:1 - Passive Viewing - Television

15:1 - Basic Decision Making Presentations

50:1 - Analytical Decision Making - Art work, Medical

80:1 - Full Motion Video - Home Theater

A is the area of screen \*\*

Sq is the gain of the screen. Assume a screen gain of 1 unless otherwise noted.

*Dr* is the projector derating value. Assume a derating value of 0.75 unless otherwise noted.

- \* Light units are in either lux or footcandles
- \*\* area in square meters or square feet

### Loudspeaker Coverage Pattern (Ceiling Mounted)

$$D = 2 * (H - h) * \tan\left(\frac{C_{\angle}}{2}\right)$$

Where *D* is diameter of coverage circle at ear height

*H* is overall ceiling height

*h* is height of the listener's ears (48 inches)

 $C_{\angle}$  is off-axis coverage angle of polar pattern

### **Loudspeaker Spacing (Ceiling Mounted)**

$$D=2*r$$
 (Edge-to-edge

$$D=2*r$$
 (Edge-to-edge)  $D=r*\sqrt{2}$  (Minimum overlap)

$$D = r$$
 (Center-to-center)

Where *D* is the distance between loudspeakers r is the radius of loudspeaker coverage circle

# Wattage at the Loudspeaker

$$EPR = 10^{\Lambda} \left( \frac{L_p + H - L_s + 20 \log(\frac{D_2}{D_r})}{10} \right) * W_{ref}$$

Where EPR is electrical power required at loudspeaker

 $L_P$  is SPL required at distance  $D_2$ 

*H* is required headroom

*Ls* is loudspeaker sensitivity at 3.28 feet (1 m)

 $D_2$  is distance from loudspeaker to listener

 $D_r$  is distance reference value

 $W_{ref}$  is the wattage reference value. Assume a wattage reference value of 1 unless otherwise noted.

# Parallel Loudspeaker Impedance

$$Z_T = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} \dots \frac{1}{Z_N}}$$

$$Z_T = \frac{Z_1}{N}$$

Where  $Z_T$  is the total impedance of the loudspeaker system

 $Z_1$  is the measured impedance of a loudspeaker

*N* is the quantity of loudspeakers in the circuit

### Ohm's Law Related

$$I = \frac{P}{V}$$

Where *I* is current *V* is circuit voltage *P* is power \*



\* Look up amplifier power in owner's manual before adding to the other AV devices.

### **Needed Acoustic Gain**

$$NAG = 20 \log \left( \frac{D_0}{EAD} \right)$$

Where NAG is Needed Acoustic Gain  $D_0$  is distance from source to listener EAD is Equivalent Acoustic Distance

### **Potential Acoustic Gain**

$$PAG = 20 \log \left( \frac{D_0 * D_1}{D_2 * D_S} \right)$$

Where PAG is Potential Acoustic Gain

 $D_0$  is distance from source to listener

 $D_1$  is distance from loudspeaker to mic

 $D_2$  is distance from loudspeaker to listener

*Ds* is distance from source to microphone

# Audio System Stability (PAG NAG Complete Formula)

$$20\log_{10}\left(\frac{D_0}{EAD}\right) < 20\log_{10}\left(\frac{D_0D_1}{D_2D_S}\right) - 10\log_{10}(NOM) - FSM$$

Where *NOM* = Number of Open Microphones

*FSM* = Feedback Stability Margin

*EAD* = Equivalent Acoustic Distance

 $D_0$  = the distance between the talker and the farthest listener

 $D_1$  = the distance between the closest loudspeaker to the microphone and the microphone

 $D_2$  = the distance between the loudspeaker closest to the farthest listener and the farthest listener

 $D_s$  = the distance between the sound source (talker) and the microphone

### **Power Amplifier Wattage (Constant Voltage)**

$$W_t = W * N * 1.5$$

Where  $W_t$  is required wattage

W is watt tap used at individual loudspeaker

*N* is total number of loudspeakers

1.5 is 50 percent amplifier headroom

### **Power Amplifier Heat Load**

$$Total\ BTU = W * 3.4 * (1 - E_D)$$

Where *Total BTU* is the total British Thermal Units released W is the wattage of the amplifier  $E_D$  is the efficiency of the device

Page 2 of 3

### **Heat Load**

$$Total\ BTU = W_E * 3.4$$

Where *Total BTU* is the total British Thermal Units released

 $W_E$  is the total watts of equipment in the room

### Jam Ratio

$$JAM = \frac{ID}{\left(\frac{OD_1 + OD_2 + OD_3}{3}\right)}$$

Where ID is the inner diameter of the conduit OD is the outer diameter of each conductor

## **Conduit Capacity**

Where *ID* is the inner diameter of the conduit *OD* is outer diameter of each conductor

$$ID > \sqrt{\frac{OD^2}{0.53}}$$

One Cable

$$ID > \sqrt{\frac{OD^2 + OD^2}{0.31}}$$

Two Cables

$$ID > \sqrt{\frac{OD^2 + OD^2 + OD^2 \dots}{0.40}}$$

3+ Cables

### **Computer Video Signal Bandwidth**

$$HF = \frac{H_{pix} * V_{pix} * f_v}{2} * 3$$

Where HF is the highest frequency in Hertz  $H_{pix}$  is the total number of horizontal pixels  $V_{pix}$  is the total number of vertical pixels  $f_V$  is the refresh rate

### Minimum Video System Bandwidth

$$SF = HF * 2$$

Where *SF* is the system frequency in Hertz

*HF* is the highest frequency in Hertz of the computer signal

### **Digital Video Data Rate**

$$R = H_{pix} * V_{pix} * C * 1.25 * FPS * 3$$

Where R is the data rate in bits per second  $H_{pix}$  is the total number of horizontal pixels  $V_{pix}$  is the total number of vertical pixels C is the color depth (bit depth) in bits FPS is the number of frames per second

# **Minimum Task Lighting**

$$Light_{Min} = \frac{\left(\frac{L_P}{A}\right)}{3}$$

Where  $Light_{Min}$  is the minimum task lighting in Lux  $L_P$  is projector lumens

A is the area of the screen in meters squared

\*Assume unity gain unless otherwise directed.